Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Environ Res ; 252(Pt 2): 118847, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582427

RESUMO

Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the µM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 µM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.

2.
JBMR Plus ; 8(5): ziae036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606150

RESUMO

The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.

3.
J Hepatol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599383

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in MASLD. METHODS: Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS: scEMC10 promoted, while mEMC10 suppressed the activation of hepatocytic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated hepatic ER stress and steatosis in mice challenged with either a MCD diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented hepatosteatosis in mice with fatty liver, suggesting a progressive role of scEMC10 in MASLD. Clinically, serum scEMC10 increased, while hepatic mEMC10 decreased in participants with MASLD. Correlative analysis indicated serum scEMC10 positively, whereas hepatic mEMC10 negatively correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS: These findings demonstrate a novel, isoform specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS: We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic ER stress and steatosis in mice, and associations of MASLD with different EMC10 isoforms in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies clearly provide the foundations for translation of scEMC10 modulation for the treatment of MASLD.

4.
Diabetes Obes Metab ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618969

RESUMO

AIMS: Taste modifies eating behaviour, impacting body weight and potentially obesity development. The Obese Taste Bud (OTB) Study is a prospective cohort study launched in 2020 at the University of Leipzig Obesity Centre in cooperation with the HI-MAG Institute. OTB will test the hypothesis that taste cell homeostasis and taste perception are linked to obesity. Here, we provide the study design, data collection process and baseline characteristics. MATERIALS AND METHODS: Participants presenting overweight, obesity or normal weight undergo taste and smell tests, anthropometric, and taste bud density (TBD) assessment on Day 1. Information on physical and mental health, eating behaviour, physical activity, and dental hygiene are obtained, while biomaterial (saliva, tongue swap, blood) is collected in the fasted state. Further blood samples are taken during a glucose tolerance test. A stool sample is collected at home prior to Day 2, on which a taste bud biopsy follows dental examination. A subsample undergoes functional magnetic resonance imaging while exposed to eating-related cognitive tasks. Follow-up investigations after conventional weight loss interventions and bariatric surgery will be included. RESULTS: Initial results show that glycated haemoglobin levels and age are negatively associated with TBD, while an unfavourable metabolic profile, current dieting, and vegan diet are related to taste perception. Olfactory function negatively correlates with age and high-density lipoprotein cholesterol. CONCLUSION: Initial findings suggest that metabolic alterations are relevant for taste and smell function and TBD. By combining omics data from collected biomaterial with physiological, metabolic and psychological data related to taste perception and eating behaviour, the OTB study aims to strengthen our understanding of taste perception in obesity.

6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474155

RESUMO

Since the emergence of coronavirus disease-19 (COVID-19) in 2019, it has been crucial to investigate the causes of severe cases, particularly the higher rates of hospitalization and mortality in individuals with obesity. Previous findings suggest that adipocytes may play a role in adverse COVID-19 outcomes in people with obesity. The impact of COVID-19 vaccination and infection on adipose tissue (AT) is currently unclear. We therefore analyzed 27 paired biopsies of visceral and subcutaneous AT from donors of the Leipzig Obesity BioBank that have been categorized into three groups (1: no infection/no vaccination; 2: no infection but vaccinated; 3: infected and vaccinated) based on COVID-19 antibodies to spike (indicating vaccination) and/or nucleocapsid proteins. We provide additional insights into the impact of COVID-19 on AT biology through a comprehensive histological transcriptome and serum proteome analysis. This study demonstrates that COVID-19 infection is associated with smaller average adipocyte size. The impact of infection on gene expression was significantly more pronounced in subcutaneous than in visceral AT and mainly due to immune system-related processes. Serum proteome analysis revealed the effects of the infection on circulating adiponectin, interleukin 6 (IL-6), and carbonic anhydrase 5A (CA5A), which are all related to obesity and blood glucose abnormalities.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , Vacinas contra COVID-19 , Proteoma , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Vacinação , Anticorpos Antivirais
7.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537153

RESUMO

OBJECTIVE: We demonstrated in the randomized 18-month DIRECT PLUS trial (n=294) that a Mediterranean (MED) diet, supplemented with polyphenol-rich Mankai duckweed, green tea, and walnuts and restricted in red/processed meat, caused substantial intrahepatic fat (IHF%) loss compared with two other healthy diets, reducing NAFLD by half, regardless similar weight loss. Here, we investigated the baseline proteomic profile associated with IHF% and the changes in proteomics associated with IHF% changes induced by lifestyle intervention. METHODS: We calculated IHF% by proton-magnetic-resonance-spectroscopy (H-MRS; normal-IHF%<5%; abnormal-IHF%>=5%). We assayed baseline and 18-month samples for 95 proteomic biomarkers. RESULTS: Participants (age=51.3±10.8years; 89%men; body-mass-index=31.3±3.9 kg/m2) had an 89.8% 18-month-retention-rate; 83% had eligible follow-up proteomics-measurements, and 78% had follow-up H-MRS. At baseline, 39-candidate-proteins were significantly associated with IHF% (FDR<0.05), mostly related to immune-function-pathways (e.g., HAOX1). An IHF%-prediction based on the DIRECT PLUS by combined-model (R2=0.47, RMSE=1.05) successfully predicted IHF% (R2=0.53) during testing and was stronger than separately-inputting-proteins/traditional markers (R2=0.43/0.44). The 18-month lifestyle intervention induced changes in 18 of the 39-candidate-proteins, which were significantly associated with IHF% change, with proteins related to metabolism, extracellular-matrix-remodeling, and immune-function pathways. THBS2 protein-change was higher in the green-MED compared to the MED group, beyond weight-and-IHF%-loss (p-value=0.01). Protein principal-component-analysis revealed differences in the 3rd-principal-component time-distinct interactions across abnormal/normal-IHF% trajectory combinations; p<0.05 for all). CONCLUSIONS: Our findings suggest novel proteomic signatures that may indicate MRI-assessed intrahepatic fat state and changes during lifestyle intervention. Specifically, CA5A, HAOX1, and THBS2 protein changes are independently associated with IHF% change, and THBS2 protein change is greater in the green-MED/high-polyphenols diet.

8.
Diabetologia ; 67(5): 928-939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431705

RESUMO

AIMS/HYPOTHESIS: As the prevalence of insulin resistance and glucose intolerance is increasing throughout the world, diabetes-induced eye diseases are a global health burden. We aim to identify distinct optical bands which are closely related to insulin and glucose metabolism, using non-invasive, high-resolution spectral domain optical coherence tomography (SD-OCT) in a large, population-based dataset. METHODS: The LIFE-Adult-Study randomly selected 10,000 participants from the population registry of Leipzig, Germany. Cross-sectional, standardised phenotyping included the assessment of various metabolic risk markers and ocular imaging, such as SD-OCT-derived thicknesses of ten optical bands of the retina. Global and Early Treatment Diabetic Retinopathy Study (ETDRS) subfield-specific optical retinal layer thicknesses were investigated in 7384 healthy eyes of 7384 participants from the LIFE-Adult-Study stratified by normal glucose tolerance, prediabetes (impaired fasting glucose and/or impaired glucose tolerance and/or HbA1c 5.7-6.4% [39-47 mmol/mol]) and diabetes. The association of optical retinal band characteristics with different indices of glucose tolerance (e.g. fasting glucose, area under the glucose curve), insulin resistance (e.g. HOMA2-IR, triglyceride glucose index), or insulin sensitivity (e.g. estimated glucose disposal rate [eGDR], Stumvoll metabolic clearance rate) was determined using multivariable linear regression analyses for the individual markers adjusted for age, sex and refraction. Various sensitivity analyses were performed to validate the observed findings. RESULTS: In the study cohort, nine out of ten optical bands of the retina showed significant sex- and glucose tolerance-dependent differences in band thicknesses. Multivariable linear regression analyses revealed a significant, independent, and inverse association between markers of glucose intolerance and insulin resistance (e.g. HOMA2-IR) with the thickness of the optical bands representing the anatomical retinal outer nuclear layer (ONL, standardised ß=-0.096; p<0.001 for HOMA2-IR) and myoid zone (MZ; ß=-0.096; p<0.001 for HOMA2-IR) of the photoreceptors. Conversely, markers of insulin sensitivity (e.g. eGDR) positively and independently associated with ONL (ß=0.090; p<0.001 for eGDR) and MZ (ß=0.133; p<0.001 for eGDR) band thicknesses. These global associations were confirmed in ETDRS subfield-specific analyses. Sensitivity analyses further validated our findings when physical activity, neuroanatomical cell/tissue types and ETDRS subfield categories were investigated after stratifying the cohort by glucose homeostasis. CONCLUSIONS/INTERPRETATION: An impaired glucose homeostasis associates with a thinning of the optical bands of retinal ONL and photoreceptor MZ. Changes in ONL and MZ thicknesses might predict early metabolic retinal alterations in diabetes.


Assuntos
Retinopatia Diabética , Intolerância à Glucose , Resistência à Insulina , Estado Pré-Diabético , Adulto , Humanos , Estudos Transversais , Retina , Glucose
10.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360943

RESUMO

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Assuntos
Resistência à Insulina , Jejum Intermitente , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Redução de Peso
11.
Hum Brain Mapp ; 45(3): e26595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375968

RESUMO

Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Estilo de Vida , Imageamento por Ressonância Magnética , Obesidade/diagnóstico por imagem , Obesidade/terapia , Obesidade/complicações , Sobrepeso/diagnóstico por imagem , Sobrepeso/terapia , Redução de Peso
12.
Cardiovasc Diabetol ; 23(1): 44, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281946

RESUMO

BACKGROUND: We aimed to explore the associations between thigh muscle fat density and vascular events. METHODS: A total of 3,595 adults (mean age, 57.2 years; women, 1,715 [47.7%]) without baseline cardiovascular events from the Korean Atherosclerosis Study-2 were included. Muscle and fat area at the mid-thigh level were measured by computed tomography (CT) using the following Hounsfield Unit range: 0-30 for low density muscle (LDM); 31-100 for normal density muscle (NDM); and - 250 to - 50 for fat. RESULTS: During a median follow-up period of 11.8 (4.3-13.9) years, vascular events occurred in 11.6% of men and 5.9% of women. Individuals with vascular events had a larger LDM area (men: 48.8 ± 15.5 cm2 vs. 44.6 ± 14.5 cm2; women: 39.4 ± 13.2 cm2 vs. 35.0 ± 11.8 cm2, both P < 0.001) compared with those who did not have vascular events during the follow-up of at least 5 years. The LDM/NDM ratio was also independently associated with vascular events after adjusting for cardiometabolic risk factors. Moreover, the LDM/NDM ratio improved the prognostic value for vascular events when added to conventional risk factors. CONCLUSIONS: The current study suggests that a higher thigh muscle fat infiltration is associated with an increased risk of developing vascular events among Korean adults.


Assuntos
Músculo Esquelético , Coxa da Perna , Masculino , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Fatores de Risco , Tomografia Computadorizada por Raios X , República da Coreia/epidemiologia
13.
Chembiochem ; 25(4): e202300550, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37873910

RESUMO

Diabetes mellitus, a metabolic disorder that is characterized by elevated blood glucose levels, is common throughout the world and its prevalence is steadily increasing. Early diagnosis and treatment are important to prevent acute complications and life-threatening long-term organ damage. Glycation sites in human serum albumin (HSA) are considered to be promising biomarkers of systemic glycemic status. This work aimed to develop a sensitive and clinically applicable ELISA for the quantification of glycation site Lys414 in HSA (HSAK414 ). The monoclonal antibodies (mAbs) were generated by immunizing mice with a glycated peptide. The established indirect ELISA based on mAb 50D8 (IgG1 isotype) yielded a limit of detection of 0.39 nmol/g HSA for HSAK414 with a linear dynamic range from 0.50 to 6.25 nmol/g glycated HSA. The inter- and intra-day assays with coefficients of variation less than 20 % indicated good assay performance and precision. Assay evaluation was based on plasma samples from diabetic and non-diabetic subjects with known HSAK414 glycation levels previously determined by LC-MS. Both data sets correlated very well. In conclusion, the generated mAb 50D8 and the established ELISA could be a valuable tool for the rapid quantitation of glycation site HSAK414 in plasma samples to evaluate its clinical relevance.


Assuntos
Diabetes Mellitus , Albumina Sérica , Humanos , Animais , Camundongos , Albumina Sérica/análise , Lisina , Anticorpos Monoclonais , Reação de Maillard , Albumina Sérica Humana/metabolismo , Ensaio de Imunoadsorção Enzimática
14.
J Clin Endocrinol Metab ; 109(3): 858-867, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37713174

RESUMO

CONTEXT: The severity of visceral adipose tissue (VAT) inflammation in individuals with obesity is thought to signify obesity subphenotype(s) associated with higher cardiometabolic risk. Yet, this tissue is not accessible for direct sampling in the nonsurgical patient. OBJECTIVE: We hypothesized that circulating miRNAs (circ-miRs) could serve as biomarkers to distinguish human obesity subgroups with high or low extent of VAT inflammation. METHODS: Discovery and validation cohorts of patients living with obesity undergoing bariatric surgery (n = 35 and 51, respectively) were included. VAT inflammation was classified into low/high based on an expression score derived from the messenger RNA levels of TNFA, IL6, and CCL2 (determined by reverse transcription polymerase chain reaction). Differentially expressed circ-miRs were identified, and their discriminative power to detect low/high VAT inflammation was assessed by receiver operating characteristic-area under the curve (ROC-AUC) analysis. RESULTS: Fifty three out of 263 circ-miRs (20%) were associated with high-VAT inflammation according to Mann-Whitney analysis in the discovery cohort. Of those, 12 (12/53 = 23%) were differentially expressed according to Deseq2, and 6 significantly discriminated between high- and low-VAT inflammation with ROC-AUC greater than 0.8. Of the resulting 5 circ-miRs that were differentially abundant in all 3 statistical approaches, 3 were unaffected by hemolysis and validated in an independent cohort. Circ-miRs 181b-5p, 1306-3p, and 3138 combined with homeostatic model assessment of insulin resistance (HOMA-IR) exhibited ROC-AUC of 0.951 (95% CI, 0.865-1) and 0.808 (95% CI, 0.654-0.963) in the discovery and validation cohorts, respectively, providing strong discriminative power between participants with low- vs high-VAT inflammation. Predicted target genes of these miRNAs are enriched in pathways of insulin and inflammatory signaling, circadian entrainment, and cellular senescence. CONCLUSION: Circ-miRs that identify patients with low- vs high-VAT inflammation constitute a putative tool to improve personalized care of patients with obesity.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , MicroRNAs/metabolismo , Tecido Adiposo/metabolismo
15.
Diabetologia ; 67(3): 470-482, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095657

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to assess the dose-response effects of the subcutaneous glucagon receptor/glucagon-like peptide-1 receptor dual agonist survodutide (BI 456906) on HbA1c levels and bodyweight reduction. METHODS: This Phase II, multicentre, randomised, double-blind, parallel-group, placebo-controlled study, conducted in clinical research centres, assessed survodutide in participants aged 18-75 years with type 2 diabetes, an HbA1c level of 53-86 mmol/mol (7.0-10.0%) and a BMI of 25-50 kg/m2 on a background of metformin therapy. Participants were randomised via interactive response technology to receive survodutide (up to 0.3, 0.9, 1.8 or 2.7 mg once weekly [qw; dose group (DG) 1-4, respectively] or 1.2 or 1.8 mg twice weekly [DG 5 and 6, respectively]), placebo or semaglutide (up to 1.0 mg qw). Participants and all those involved in the trial conduct/analysis were blinded; the semaglutide arm was open-label. The primary endpoint was absolute change from baseline in HbA1c after 16 weeks' treatment. The key secondary endpoint was relative change from baseline in bodyweight after 16 weeks' treatment. RESULTS: A total of 413 participants were randomised (DG1, n=50; DG2, n=50; DG3, n=52; DG4, n=50; DG5, n=51; DG6, n=50; semaglutide, n=50; placebo, n=60). The full analysis set comprised 411 treated participants (DG6, n=49; placebo, n=59). Adjusted mean (95% CI) HbA1c decreased from baseline (mean ± SD 64.7±9.2 mmol/mol [8.07±0.84%] after 16 weeks' treatment: DG1 (n=41), -9.92 mmol/mol (-12.27, -7.56; -0.91% [-1.12, -0.69]); DG2 (n=46), -15.95 mmol/mol (-18.27, -13.63; -1.46% [-1.67, -1.25]); DG3 (n=36), -18.72 mmol/mol (-21.15, -16.29; -1.71% [-1.94, -1.49]); DG4 (n=33), -17.01 mmol/mol (-19.59, -14.43; -1.56% [-1.79, -1.32]); DG5 (n=44), -17.84 mmol/mol (-20.18, -15.51; -1.63% [-1.85, -1.42]); DG6 (n=36), -18.38 mmol/mol (-20.90, -15.87; -1.68% [-1.91, -1.45]). The mean reduction in HbA1c was similar with low-dose survodutide (DG2: -15.95 mmol/mol [-1.46%]; n=46) and semaglutide (-16.07 mmol/mol [-1.47%]; n=45). Mean (95% CI) bodyweight decreased dose-dependently up to -8.7% (-10.1, -7.3; DG6, n=37); survodutide ≥1.8 mg qw produced greater bodyweight reductions than semaglutide (-5.3% [-6.6, -4.1]; n=45). Adverse events (AEs) were reported for 77.8% of survodutide-treated participants (mainly gastrointestinal), 52.5% receiving placebo and 52.0% receiving semaglutide. CONCLUSIONS/INTERPRETATION: Survodutide reduced HbA1c levels and bodyweight after 16 weeks' treatment in participants with type 2 diabetes. Dose-related gastrointestinal AEs could be mitigated with slower dose escalations. TRIAL REGISTRATION: ClinicalTrials.gov NCT04153929 and EudraCT 2019-002390-60. FUNDING: Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Peptídeos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Hipoglicemiantes/efeitos adversos , Glucagon , Resultado do Tratamento , Peptídeo 1 Semelhante ao Glucagon , Método Duplo-Cego
16.
Lancet Diabetes Endocrinol ; 12(2): 119-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142707

RESUMO

BACKGROUND: Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS: For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS: There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION: These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Resistência à Insulina , Humanos , Interleucina-18 , Estudos Prospectivos , Insulina/uso terapêutico , Lipídeos
17.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069170

RESUMO

In previous genome-wide association studies (GWAS), genetic loci associated with obesity and impaired fat distribution (FD) have been identified. In the present study, we elucidated the role of the PEMT gene, including the waist-hip-ratio-associated single nucleotide polymorphism rs4646404, and its influence on obesity-related metabolic traits. DNA from 2926 metabolically well-characterized subjects was used for genotyping. PEMT expression was analyzed in paired visceral (vis) and subcutaneous (sc) adipose tissue (AT) from a subset of 574 individuals. Additionally, PEMT expression was examined in vis, sc AT and liver tissue in a separate cohort of 64 patients with morbid obesity and liver disease. An in vitro Pemt knockdown was conducted in murine epididymal and inguinal adipocytes. Our findings highlight tissue-specific variations in PEMT mRNA expression across the three studied tissues. Specifically, vis PEMT mRNA levels correlated significantly with T2D and were implicated in the progression of non-alcoholic steatohepatitis (NASH), in contrast to liver tissue, where no significant associations were found. Moreover, sc PEMT expression showed significant correlations with several anthropometric- and metabolic-related parameters. The rs4646404 was associated with vis AT PEMT expression and also with diabetes-related traits. Our in vitro experiments supported the influence of PEMT on adipogenesis, emphasizing its role in AT biology. In summary, our data suggest that PEMT plays a role in regulating FD and has implications in metabolic diseases.


Assuntos
Estudo de Associação Genômica Ampla , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Fosfatidiletanolamina N-Metiltransferase/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/metabolismo , Obesidade/genética , Obesidade/metabolismo
18.
Front Endocrinol (Lausanne) ; 14: 1243910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034010

RESUMO

Background: Fasting morning cortisol (FMC) stress hormone levels, are suggested to reflect increased cardiometabolic risk. Acute response to weight loss diet could elevate FMC. Richer Polyphenols and lower carbohydrates diets could favor FMC levels. We aimed to explore the effect of long-term high polyphenol Mediterranean diet (green-MED) on FMC and its relation to metabolic health. Methods: We randomized 294 participants into one of three dietary interventions for 18-months: healthy dietary guidelines (HDG), Mediterranean (MED) diet, and Green-MED diet. Both MED diets were similarly hypocaloric and lower in carbohydrates and included walnuts (28 g/day). The high-polyphenols/low-meat Green-MED group further included green tea (3-4 cups/day) and a Wolffia-globosa Mankai plant 1-cup green shakeFMC was obtained between 07:00-07:30AM at baseline, six, and eighteen-months. Results: Participants (age=51.1years, 88% men) had a mean BMI of 31.3kg/m2, FMC=304.07nmol\L, and glycated-hemoglobin-A1c (HbA1c)=5.5%; 11% had type 2 diabetes and 38% were prediabetes. Baseline FMC was higher among men (308.6 ± 90.05nmol\L) than women (269.6± 83.9nmol\L;p=0.02). Higher baseline FMC was directly associated with age, dysglycemia, MRI-assessed visceral adiposity, fasting plasma glucose (FPG), high-sensitivity C-reactive-protein (hsCRP), testosterone, Progesterone and TSH levels (p ≤ 0.05 for all). The 18-month retention was 89%. After 6 months, there were no significant changes in FMC among all intervention groups. However, after 18-months, both MED groups significantly reduced FMC (MED=-1.6%[-21.45 nmol/L]; Green-MED=-1.8%[-26.67 nmol/L]; p<0.05 vs. baseline), as opposed to HDG dieters (+4%[-12 nmol/L], p=0.28 vs. baseline), whereas Green-MED diet FMC change was significant as compared to HDG diet group (p=0.048 multivariable models). Overall, 18-month decrease in FMC levels was associated with favorable changes in FPG, HbA1c, hsCRP, TSH, testosterone and MRI-assessed hepatosteatosis, and with unfavorable changes of HDLc (p<0.05 for all, weight loss adjusted, multivariable models). Conclusion: Long-term adherence to MED diets, and mainly green-MED/high polyphenols diet, may lower FMC, stress hormone, levels,. Lifestyle-induced FMC decrease may have potential benefits related to cardiometabolic health, irrespective of weight loss. Clinical trial registration: ClinicalTrials.gov, identifier NCT03020186.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína C-Reativa , Jejum , Hemoglobinas Glicadas , Hidrocortisona , Testosterona , Tireotropina , Redução de Peso/fisiologia
19.
Front Nutr ; 10: 1275160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024380

RESUMO

A comprehensive understanding of how dietary components impact immunoregulatory gene expression in adipose tissue (AT) and liver, and their respective contributions to metabolic health in mice, remains limited. The current study aimed to investigate the metabolic consequences of a high-sucrose diet (HSD) and a high-fat diet (HFD) in female mice with a focus on differential lipid- and sucrose-induced changes in immunoregulatory gene expression in AT and liver. Female C57BL/6 J mice were fed a purified and macronutrient matched high fat, high sugar, or control diets for 12 weeks. Mice were extensively phenotyped, including glucose and insulin tolerance tests, adipose and liver gene and protein expression analysis by qPCR and Western blot, tissue lipid analyses, as well as histological analyses. Compared to the control diet, HSD- and HFD-fed mice had significantly higher body weights, with pronounced obesity along with glucose intolerance and insulin resistance only in HFD-fed mice. HSD-fed mice exhibited an intermediate phenotype, with mild metabolic deterioration at the end of the study. AT lipid composition was significantly altered by both diets, and inflammatory gene expression was only significantly induced in HFD-fed mice. In the liver however, histological analysis revealed that both HSD- and HFD-fed mice had pronounced ectopic lipid deposition indicating hepatic steatosis, but more pronounced in HSD-fed mice. This was in line with significant induction of pro-inflammatory gene expression specifically in livers of HSD-fed mice. Overall, our findings suggest that HFD consumption in female mice induces more profound inflammation in AT with pronounced deterioration of metabolic health, whereas HSD induced more pronounced hepatic steatosis and inflammation without yet affecting glucose metabolism.

20.
Mol Med ; 29(1): 138, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864157

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS: Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS: TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS: In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...